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Abstract. Binary disordered systems are usually obtained by mixing two ingredients in variable propor-
tions: conductor and insulator, or conductor and super-conductor. They present very specific properties,
in particular the second-order percolation phase transition, with its fractal geometry and the multi-fractal
properties of the current moments. These systems are naturally modeled by regular bi-dimensional or
tri-dimensional lattices, on which sites or bonds are chosen randomly with given probabilities. The two
significant parameters are the ratio h = o1 /00 of the complex conductances, oo and o1, of the two compo-
nents, and their relative abundances p (or, respectively, 1 — p). In this article, we calculate the impedance
of the composite by two independent methods: the so-called spectral method, which diagonalises Kirch-
hoff’s Laws via a Green function formalism, and the Exact Numerical Renormalization method (ENR).
These methods are applied to mixtures of resistors and capacitors (R-C systems), simulating e.g. ionic
conductor-insulator systems, and to composites constituted of resistive inductances and capacitors (LR-C
systems), representing metal inclusions in a dielectric bulk. The frequency dependent impedances of the
latter composites present very intricate structures in the vicinity of the percolation threshold. In this paper,
we analyse the LR-C behavior of compounds formed by the inclusion of small conducting clusters (“n-
legged animals”) in a dielectric medium. We investigate in particular their absorption spectra who present
a pattern of sharp lines at very specific frequencies of the incident electromagnetic field, the goal being
to identify the signature of each animal. This enables us to make suggestions of how to build compounds

with specific absorption or transmission properties in a given frequency domain.

PACS. 66.10.Ed Ionic conduction — 66.30.Dn Theory of diffusion and ionic conduction in solids —

61.43.Gt Powders, porous materials

1 Introduction

Composite materials, obtained for instance by mixing
powders, are increasingly used in modern mechanical, elec-
trical and optical devices. Their extraordinary properties
often meet the very compelling standards needed for high
technology materials, e.g. high temperature resistance,
low density, and low thermal or electrical conductivity.
Their manufacturing is however extremely delicate and
requires a good comprehension of the microscopic and
macroscopic properties of the different constituents. The
goal of this paper is to provide a better theoretical under-
standing of various electrical properties of these materials,
especially in the high frequency domain.

Composite systems are commonly thought of as ran-
dom networks where each bond represents, via a complex
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impedance, a grain or a grain boundary. The various con-
stituents of the composite material are then randomly dis-
tributed over the network, and elements of the same type
connected to each other form “clusters”, or “animals” in
the terminology of Pierre-Gilles de Gennes. The interfaces
between clusters are usually the physically most inter-
esting regions [1,2]. Therefore, in binary composites, the
percolation of one component through the other plays an
essential role: the properties of the material change dra-
matically for small variations of the chemical composition
in the vicinity of the percolation threshold, giving rise to
a second-order phase transition which allows the physicist
to put a large number of disordered systems in the same
universality class.

These heterogeneous media occur mainly as bulk ma-
terial occupying a 3D volume, or as thin, almost 2 di-
mensional, layers upon a substrate. In both cases, the
electrical properties, i.e. the frequency-dependent net-
work impedance, can be obtained as a direct solution of
Kirchhoff’s Laws for each network node. As this involves
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the diagonalisation of large matrices, this method becomes
very expensive in CPU time as soon as realistic systems
are to be modelled. On the other hand, a crude mean-field
approximation, although generally qualitatively correct, is
not sophisticated enough to reproduce experimental re-
sults quantitatively.

Alternative approaches are provided by spectral meth-
ods, based on the theory of random walks (see the excel-
lent article by McCrea and Whipple [3], and the book of
Spitzer [4]). These approaches have been extended to per-
colation phenomena [5,6] and work particularly well in
two dimensions. For a random 2D network, the electrical
and optical properties are described by its analytically ob-
tainable conductance poles (resonances) and their residues
(weights). This approach can also be extended to binary
disordered media in 3D, as shown by two of the authors in
a previous paper, although the possibility of an analytic
treatment is lost [7].

One goal of the present paper is to study the elemen-
tary clusters, or “animals”, which take part in percolation
until the threshold is reached and the cluster becomes in-
finite. A detailed description of an algorithm generating
all animals for a given number of bonds (“legs”), and the
complete “zoo” of up to 4-legged animals will be given
in the Appendix. A composite’s response to a frequency-
dependent electromagnetic signal is a highly characteristic
spectrum which can be viewed as the signature of conduct-
ing clusters (animals) embedded in a dielectric medium.
In the dilute limit, where the influence of one animal on
its neighbors is negligible, one measures the almost un-
perturbed spectral fingerprint of the individual animals.
In this case, a theoretical study of the spectra of a lim-
ited number of small, elementary animals provides a good
starting point for the interpretation of the response of the
composite as a whole. Still provided the concentration of
metallic clusters is low, one may even be confident to gain
some insight into the microscopic structure of the material
itself.

Our aim is to compare these results to those of the
renormalization algorithm described below. The latter re-
mains very efficient even if the animals become large, or
if elementary animals are arranged as regular arrays over
the whole lattice, cases for which the exact spectral cal-
culations become very cumbersome. The algorithm im-
plemented for performing these simulations is called Ex-
act Numerical Renormalization (ENR) and was initially
proposed in reference [8-10]. The basic idea is to elimi-
nate network nodes successively, and to connect all neigh-
bors of the eliminated site by bonds with renormalized
impedances. The method is essentially applicable to any
connected network, regardless of dimensionality and con-
nectivity. In the following, however, we will restrict our
considerations to the hypercubic lattices in two and three
dimensions. We will evaluate the impedance versus fre-
quency curves of metallic animals, constituted of bonds,
or legs, to which a complex conductivity is attributed, on
square (2D) and simple cubic (3D) dielectric lattices.

The notations of this paper are those of refer-
ences [5,11]; we recall them shortly. The bond occupa-
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tion is obtained according to the following binary law:
conductance og and concentration p for one kind of bond
(representing the animal’s legs), o1 and 1 — p for the rest
of the lattice (voids). The dimensionless complex ratio
h = 01/0¢ of the two conductances and the relative abun-
dance p are the essential parameters of the model. For
convenience, h may be replaced by the equivalent com-
plex variable

1 g0
e — — 79 1
1—-h gp — 01 ()

For the 2D case, the square lattice is self-dual, and
quantities such as the percolation threshold, or spectral
properties of some animals, can be easily deduced from
this particularity. In 3D, the self-duality property is lost.
In Section 2, we recall the analytic method and the nu-
merical algorithm. In Section 3, we examine the spectral
properties of elementary animals and the particularities
which arise if such metallic animals are disposed as regu-
lar super-arrays on a dielectric lattice; the real and imag-
inary parts of the impedance are presented and discussed
for a large panel of such animals. In Section 4, we are
concerned by binary random lattices and the correspond-
ing Nyquist diagrams. The recursive algorithm used for
the creation of all n-animals (with n being the number of
legs), and the symmetry properties of animals with n <9
are discussed in the appendix. We conclude the paper by
proposing some applications of binary random networks.

2 Model and algorithm

We consider a binary composite constituted of a random
distribution of electrical bonds and voids on a hypercu-
bic lattice. The total conductance Y of the sample (or,
alternatively, its impedance Z = 1/Y), is obtained by the
fulfillment of Kirchhoff’s Current Law at each network
node x:

Zam,y(‘/x - Vy) = le,y = Ix (2)

y(z) y(z)

with V, corresponding to the potential at node x, I, the
current arriving on the node x, and I , the current from y
to = along the link of conductance o, 4. If a total current
I flows through the sample between the two electrodes,
of which one is at potential V; and the other grounded
(V =0), the conductance of the network reads Y = I/V].
Only the finite section £ of a square (2D) or cubic lattice
(3D) in-between the two electrodes is considered. In three
dimensions, this piece is characterized by

L={1...N,}x{1...N,} x {1...(N.—1)}-

The plans z = 0, and z = N, (respectively y =0, and y =
Ny in the 2D case) are taken as electrodes. Each link of
this binary network is assumed to have either conductance
oo with probability p, or conductance o; with probability
q = 1 — p. In order to reduce finite-size effects, periodic
boundary conditions are imposed in all directions parallel
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to the electrodes, i.e. in the = (z and y) direction in 2D
(3D, respectively).

A convenient alternative to a direct solution of
Kirchhoff’s Laws is the spectral method in which the spec-
trum results from a solution of a generalized eigenvalue
problem. This spectrum presents a rich set of resonances,
characteristic of the bond distribution and the underlying
lattice structure. This approach, proposed by Straley [12]
and Bergman [13], yields the conductivities, corresponding
to different values of h = o1 /00, by means of the frequen-
cies and weights of the conductance poles. Instead of the
bare h itself, one may of course use the handier parameter
A =1/(1 — h) defined in equation (1) which confines the
poles to the interval [0, 1].

It has been adapted to 2D finite networks in refer-
ence [6] and enhanced to 3D in reference [7]. However, as
larger networks are to be treated, the method becomes
very time-consuming, since it involves the numerical di-
agonalisation of large matrices. In the following, we will
therefore tackle the problem with another algorithm which
is inspired from the renormalization procedure [8-10].

In this method, known as Exact Numerical Renormali-
sation (ENR), the network sites are eliminated one by one.
At each step, the former neighbors of the eliminated site
are connected by possibly new bonds whose impedances
are chosen such that the global impedance of the system
remains invariant. Namely, if x is the site to be eliminated,
the conductivity o; ; between all sites ¢ and j of the neigh-
borhood of z will be reassigned to o7 ;. It is easy to verify
that o7 ; is given by

O0i,x0z,j

Zj Oz,j

* P ..
0;; = 0ijt

(3)

where the summation is over all neighbors of site x [10].
Note that 0; ; = 0 if sites ¢ and j are not connected before
the elimination of . The renormalization procedure is nu-
merically exact. The ENR procedure stops when the two
electrodes are linked by only one bond which then car-
ries the total conductivity of the initial lattice. Details of
calculation are given in reference [10]. The ENR method
is particularly well adapted to a sparse medium, and can
be applied to any linear network including systems with
more than two components. For instance in a conductor-
insulator system near the percolation threshold, each site
x of the infinite cluster has an average number of neighbors
smaller than the connectivity of the system, and a great
number of sites can be suppressed without the introduc-
tion of additional links between remaining sites. But even
for the problems considered in this paper, where all bonds
of the lattice must be taken into account and the renormal-
ization has to be performed for all frequencies, the ENR
algorithm is considerably faster than the spectral method
developed in references [6,7]. The main restriction of the
ENR method is that the nature of the components has to
be determined by defining a relation h(w) or A(w) before
the computation, e.g. h(w) = jCw(R+ jLw) for the LR-C
model considered in the following.
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This paper is devoted to the study of:

1. Small clusters (“animals”) of a few connected conduct-
ing bonds (of inductance L and resistance R) in an in-
sulating environment (of capacity C) [5], the aim being
to detect the signature of elementary clusters in the
spectral response of a conductor-insulator mixture.

2. Percolation through a binary Resistive-Capacitive
lattice. For these systems, one has to sample over a
large number of random networks in order to gain
some information which is intrinsic to the chemical
composition p. For disordered systems, one specific
random network is not interesting, and all quantities
have to be averaged over a sufficiently large number
of systems of the same degree of disorder. For obvious
symmetry considerations, the interchange of p and ¢
corresponds to replacing h by 1/h, or A by 1 — A. This
symmetry relation allows us to confine the range of
investigation of such models to p < % Moreover, one
can immediately conclude that any averaged quantity

computed for p = 1 will be symmetrical around the

2
value A = % This implies, for instance, that the

average conductance of the network obeys

Y(anO;Ul) :UOY(pa >‘) :UIY(]-*pa]-*)‘)' (4)

The spectral algorithm yields the positions and cross-
sections of all resonances and for any cluster (provided
the cluster is not too large and the numerical calculation
remains feasible [7]), and a fortiori for small n-animals
(n < 10). In 2D, moreover, all quantities may — at least
in principle — be evaluated analytically on an infinite lat-
tice [5].

The ENR algorithm, on the other hand, is particularly
well adapted to large clusters (percolation), and to the
study of the coupling between a few animals as a function
of their mutual distances. Instead of the resonance posi-
tions (eigenvalues) and the corresponding weights (which
are connected to the eigenvectors), this algorithm yields
readily the total frequency-dependent impedance of the
whole system with the desired degree of accuracy.

3 Spectral properties of animals

In this paragraph, small metallic clusters are investigated.
These “animals” are constituted of n conducting bonds
(“legs” of self-inductance L and resistivity R), and “live”
on an insulating lattice of capacitors C' [5]. For the 2D
case, an exhaustive list of all up to 4-legged animals living
on a square lattice, together with their geometries and
abundances, is given in the Figure 1.

For animals living on a finite 3D network, the spectra
show pole densities and average resonance positions which
scale as the inverse of the linear size of the sample, thus
corresponding to the ratio surface over volume for a cubic
sample [7]. This allows one to extrapolate the finite size
results to an infinite lattice. Alternatively, the resonance
values and the pole densities of a single animal on an in-
finite network can be evaluated exactly by the method
described in [5]. The positions of the resonances are then
the eigenvalues of a matrix M, , obtained from the values
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1 leg: 2 legs:

1 2a 2b

100 % 33.3% 66.7%
Sl L. U 1L

3a

83% 333% 16.7% 16.7%  25%
4 legs:

! 1 ?
3.3% 1.7% 6.7% 3.3%
6.7% 3.3% 3.3% 6.7%
6.7% 3.3% 11.7% 5.8%
11.7% 11.7% 11.7% 2.5%

Fig. 1. All topologically different animals (species) with
one leg (one species), two legs (two species), three legs (five
species), and four legs (16 species). The percentages indicate
how many animals belong to a given species in a zoo.

of the Green function of the Laplacian operator on the
infinite lattice
My = Z (Goyy — Gaz) (5)

z€C(y)

where x, y and z belong to the conducting cluster and
the index of summation, z, runs over the neighborhood
of y, C(y). In general, this is a ns X ns non-symmetrical
matrix, where ng is the number of sites of the animal under
consideration. It is straightforward to obtain an animal’s
set of resonances (see e.g. Tab. 1 for all animals up to
3 legs shown in Fig. 1). The cross section (i.e. the residue)
v, of a resonance A\, can be obtained analytically. For
each animal, one finds a resonance at A = 0 which has no
physical meaning and carries 0 weight [7].

This spectral method developed for the 2D case can be
readily extended to 3D systems, but the helpful duality
property gets lost in 3D. The resonance positions given
for a finite size realization of the 3D case are presented in
Tables 2 and 3. They show the sensitivity of the spectra to
the animals’ position with respect to the electrodes, and
differ considerably from the 2D results listed in Table 1.
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Table 1. Exact resonance position A and corresponding
residues for animals consisting of one, two and three bonds.
Analytical results are compared to ENR results for a single
LR animal in the center of a 24 x 24 square lattice. The ani-
mals’ labels are those of Figure 1.

animal X exact A ENR residue  Re(Z)
1 0.5 0.5011248 4. 2.30485
2a 0.36338 0.367 8.6455 4.95521
0.63662 0.000
2b 0.318310 0.316 2.304 1.471
0.681690 0.6784 2.304 1.09
3a 0.28216 0.29219 14.633 9.155
0.54648 0.000
0.67136 0.67158 0.16406  0.1175
3b 0.24970592  0.251 6.959 4.202
0.54315776  0.5424 2.239 1.454
0.70713638  0.7061 0.679 0.4564
3c 0.16581640  0.167 2.686 1.8034
0.6366200 0.000
0.69756359  0.698 2.979 1.956
3d 0.22926367  0.243 2.718 3.693
0.55349146 0.000
0.55349146  0.7575 2.718 3.66
3e 0.30243640 0.000
0.3633800 0.367 8.645 5.48
0.8341836 0.000

In what follows, we restrict our analysis to the 2D case
but a generalization to 3D is immediate. Applying the
formalism proposed by Clerc et al. [5], to the 2-legged
animals 2a and 2b of Figure 1, we obtain

1 —(2+4g) 49+1
-1 2 -1
49+1 —(2+49) 1

The value of g depends on the relative orientation of the
two bonds and may be obtained analytically in 2D: g =
Gy == 71 for two bonds in a line, and g = G111 = —= L for
two orthogonal bonds. One obtalns A =—g and Ay = g+1
as elgenvalues of M leading to resonances at h; = 1‘59 and
ho = . For self-dual animals in 2D, duality implies
that the solutlons occurs as pairs verifying the relations
A+ A2 = 1 or hihy = 1. For two adjacent links with
the same orientation, we have g = G = —0.36338, and
the two resonances occur respectively at A\; = 0.36338
and Ao = 0.63662. For two orthogonal links, we have g =
G1, = —0.31831, and the resonances are A\; = 0.31831
and Ag = 0.68169 (see Tab. 1). In both cases, these values
are well confirmed by the ENR results (except that, for
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Table 2. Resonance position and corresponding residues for
some one- or two-legged animals located at various positions
in a 8 X 8 X 8 cubic lattice. Due to the boundary conditions,
only the current direction (z) is relevant. i, labels a 1-animal
consisting of a single bond between plans z = n and n + 1. I,
represents a 2-animal consisting of two adjacent bonds along
the same direction, between plans z = n and n + 2.

animal  pole position residue 10™2 unit
i0, 97 0.789308423  4.17081055
i1,46  0.674277363  7.54795650
2,45 0.668037619  7.76440136
i3, 44  0.667363895  7.78801367
Io, Is  0.570490690  0.77324464
0.893095096  3.61773483
I, Is  0.544761964  0.00397830
0.797553018  7.93113971
I», I+ 0.543267933  0.00004814
0.792133581  8.20040186

I3 0.543157473 0
0.791570318  8.22848890

obvious reasons, the zero weight resonance of animal 2a
cannot be detected by ENR).

For all up to 3-legged animals represented in Figure 1,
the exact and numerical eigenfrequencies, and the corre-
sponding exact residues along with Re(Z)max are listed
in Table 1. The spectrum is deduced from the numeri-
cally obtained real part of the impedance versus w or A;
within the ENR algorithm the residue of each pole is
closely related to the maximum value of the real part of
the impedance, Re(Z)max [5,6]. For a 2D N x N lattice
with L = C' = 1 and resistance R varying between 1x 1073
and 2 x 107!, we find:

Ya_ (6)

Re(Z)max =~ N

For an animal in the center of a sufficiently large lattice
(e.g. Ny = N, = 24) finite size effects — resulting in a small
shift of the resonance positions — may be safely ignored.
Its spectrum may be calculated for pulsations w such that
A(w) runs over the complete interval [0, 1].

It is numerically impossible to find resonances of zero
cross-section. Therefore, animals of the same species,
which necessarily have the same eigenvalues A — as e.g.
in Figure 2 the animals 1 and 5, 6 and 7, 4 and 11, and 8
and 12 — may be oriented differently with respect to the
electrodes in order to identify, if possible, the positions of
the resonances of zero weight. According to this analysis,
the animal 1 of Figure 2, whose three sites are on the same
potential, is not crossed by any current: consequently, the
three resonances have zero weight and do not contribute
to the conduction. The poles corresponding to diagram 7
of Figure 2 — a “T” with the two bonds of its horizon-
tal bar perpendicular to the electrodes — are two times
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Table 3. Similar results as in Table 1 for a right-angle animal
with the vertex on row n + 1.

animal  pole position residue 1072 unit
Iy 0.566366254  4.05530700
0.903637749  1.10140027
I 0.534390544  6.66404562
0.808411116  1.89039118
I, 0.531898275  6.86342706
0.803701317  1.91149019
I 0.531617073  6.88538519
0.803195822  1.91366884
Iy 0.531730016  6.88512684
0.803195852  1.91287160
Iy 0.532860589  6.86124029
0.803701327  1.90472208
Is 0.546552694  6.64049976
0.808420249  1.80603241
X
1 2 3 4
5 6 7
V1 Vv o= 0
8
9
12
10 11

_— Y

Fig. 2. Representation of a square lattice in 2D, of size N, =
N, = 10. The two electrodes at y = 0 and y = N, = 10
are, respectively, at potential V7 (assumed > 0) and Vy = 0.
Periodic boundary conditions are assumed in the x direction.
Twelve animals are shown for example.

stronger than those of diagram 6 — the same “T” but
turned by 90° such that only one bond is perpendicular
to the electrodes. The same holds true, respectively, for
the diagrams 8 and 12, and also for 4 and 11. The dia-
grams 2, 3 and 11 present strictly the same response to
an incident a.c. wave: obviously, the bonds parallel to the
electrodes do not participate to the resonance phenomena
at all.

For large clusters, or when several clusters are present
on the surface, it is very lengthy to obtain the exact
spectral responses since inter-cluster interactions must be
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Fig. 3. Real part Re(Z) of the impedances versus A for various
animals living on a 12 x 12 square lattice. (a) The continuous
peak at A = 0.5 is the signature of the simplest 1-animal —
a single inductance — in y-direction. The dashed peak on its
right, at A ~ 0.63, is obtained with two parallel coils on suc-
cessive lines (animal no. 3 in Fig. 2), and the dotted-dashed
peak on the left, at A\ ~ 0.37, has its origin in two adjacent
inductances on the same line (animal no. 5 in Fig. 2). (b) The
dashed peak on the right was obtained by two parallel coils in
y-direction, separated by an empty line. The dot-dashed peak
on the left corresponds to two coils on the same horizontal line,
separated by a capacitive link. Comparison with the dashed
and dot-dashed curves in Figure 3a shows that the coupling
between the coils decreases and the resonances occur closer to
the value A ~ 0.50 (characteristic for a single coil). (c) Spec-
tra given by various staircase-shaped animals: the continuous
line, with the two peaks closest to the center, at A = 0.32 and
A = 0.68, origins from two coils forming a right-angle (animal
no. 9 in Fig. 2). The dashed line, showing peaks at A\ ~ 0.22
and A ~ 0.78, corresponds to animals no. 8 and 12 in Figure 2.
The dot-dashed line with the outermost peaks, at A ~ 0.16
and A ~ 0.84 corresponds to a four-step staircase animal. The
separation in A between an animal’s two spectral peaks thus
increases with the animal’s size. (d) Comparison of two disor-
dered system with the same densities of coils: the full line cor-
responds to 36 two-bond right angles, with vertex sites chosen
at random. The dashed line corresponds to 72 randomly chosen
bonds, 36 of which are horizontal and the other 36 vertical.

taken into account. Under these conditions, the ENR al-
gorithm reveals its efficiency. We only present the cal-
culations for the 2D case. In 3D, the physical ideas are
essentially the same, but the calculus becomes very cum-
bersome. Figure 3, where the weights of the resonances
are represented as a function of the parameter A, shows
the coupling between resistive coils placed in different lo-
cations of the capacitive lattice. In the spectra represented
in Figure 3a, each inductance (L,R) occupies a link in the
y-direction (perpendicular to the electrodes) and it is not
connected to any electrode. The central peak corresponds
to two well separated coils: it occurs at A = 0.5, i.e. the
resonance frequency of a single coil, but carries twice the
weight. The left peak in the figure corresponds to two
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horizontal inductances in series, whereas the right peak
corresponds to two parallel inductances separated by one
lattice spacing in the z-direction (i.e. by capacities on ei-
ther side). From duality, we know that the resonances are
the same in the two cases but each time, only one peak
contributes to the spectrum, while the other resonance has
zero cross section. These results can be understood quali-
tatively in terms of, respectively, two inductances in series
(inductance ~ 2L, with resonance pulsation w, ~ wo/v/2),
and two inductances in parallel (inductance ~ L/2, with
resonance pulsation wy >~ wg X \/5), where wg =1/ VLC is
the resonance pulsation of a single LC' circuit. This sim-
ple picture yields A\, = 0.3692 and A\, = 0.6410, and al-
most fulfills the exact duality relation A\, + A\, = 1. Note
also that the maxima of the left and right peaks are ap-
proximately the same, both being very close in height to
the central peak (which carries the intensity of two well
separated coils): despite the coupling, the amplitudes are
almost additive.

Figure 3b illustrates that the coupling between the
bonds decreases very quickly with the distance between
the coils. The spectra were obtained with similar coil-
capacity configurations as the outer peaks of Figure 3a,
but each time the separation between the coils was in-
creased by interposing a capacity (empty link), shifting
the peaks closer to the central value of A = 0.5, charac-
teristic for independent coils.

Figure 3c represents the spectra of three different stair-
case animals. The solid line corresponds to the spectrum
of a single right angle — see animal 2b in Figure 1; for com-
parison, its amplitude has been multiplied by a factor of
eight. The dashed line shows the resonances of an animal
corresponding to number 3d in Figure 1 (the amplitudes
are multiplied by a factor of four). Finally, the dotted-
dashed line represents the response of a four-step stair-
case. Clearly, the relevant eigenvalues, i.e. those with non-
vanishing cross sections, drift further and further apart as
the size of the animal increases, while the corresponding
cross-sections are roughly proportional to the number of
links in the y-direction. Besides the main resonances visi-
ble in the figure, the animals — especially the larger ones
— may contain eigenvalues of zero or almost zero weight.
Note that all staircase animals are self-dual (if contained
in an infinite lattice); hence the eigenvalues occur in pairs
satisfying A1 + Ay = 1, which provides a good check for
the numerical results and yields spectra symmetric about
A=0.5.

However, if such right-angle 2-animals are randomly
spread on the lattice the resulting impedance is quite dif-
ferent from an individual animal’s: the full line in Fig-
ure 3d corresponds to 36 right-angle animals distributed
at random on a 12 x 12 network (averaged over one hun-
dred realizations) and only the peak near A ~ 0.7 can be
identified as a signature of the right-angle structure. With
the same conditions, but with 36 horizontal bonds and 36
vertical bonds chosen at random, the result is given by the
dashed line curve of Figure 3d.

We conclude that only in the very “dilute” limit (p <
1), the spectral features may be assigned to elementary
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animals, such as isolated links or pairs of links. If an
animal is predominant in a network, it is easy to pre-
dict the conductivity ratio h, and the frequency which
leads to the optimal conductivity: in practical applica-
tions, a pattern could be chosen in order to obtain a selec-
tive absorption or reflectivity for a given frequency band.
This property might have some interesting practical im-
plications which could result in the engineering of devices
whose impedances might almost be chosen a la carte. As
soon as the density of animals in the lattice increases, and
the animals’ legs occupy in the order of 5% of the lattice
bonds or more, the coupling between patterns increases
and with it the difficulty to assign the observed spectrum
to a specific animal.

We want to draw the reader’s attention to the spec-
tra that emerge if the coils are not randomly distributed
but regularly arranged on the lattice, thus forming a regu-
lar super-structure of the dielectric lattice. Figure 4a was
obtained with an array of alternating bonds (coils) and
voids (capacities) on every other horizontal line of the net-
work, resulting in a density of inductive bonds of 12.5%
(every second horizontal bond on every second horizontal
line is occupied, whereas all vertical bonds are empty).
One naively expects a number of resonances comparable
to the number of coils, but this is not the case: almost the
entire spectral weight is concentrated in one single peak
occurring at A = 0.628. This result turns out to be robust
against variations of the lattice size: is has been confirmed
by three different arrays, N, = N, = 12,18 and 24, and
each time the domain A € [0,1] has been resolved into
500 intervals. The height of the peak turns out to be al-
most invariant, since it is a function of the density of coils
contained in the array. Note however that the given values
for the peak position are approximate, since it is numeri-
cally rather difficult to locate this very narrow maximum
precisely.

In an analogous system, where in either direction the
spacing between the coils has been increased from 2 (bond-
void) to 3 (bond-void-void) or 4 (bond-void-void-void),
very similar results are observed: the spectra of these
structures are shown in Figure 4b and present peaks at,
respectively, Apmax = 0.556 and Apax = 0.533. The slight
shift to lower A may be easily interpreted as a result of
the decreasing inter-coil coupling when more and more
capacities are interposed.

In Figures 4c and d, the spectra for other regular ar-
rangements of bonds and voids are shown: Figure 4c is
the result for an analogous pattern as in Figure 4a, but
with each bond replaced by a right angle (see diagram 9
in Fig. 2), thus resulting in a periodic structure of right
angles, separated in « and y-direction by a single void (ca-
pacity). At the first glance, the results seem to be quite
similar to those of the array of horizontal bonds (Fig. 4a),
and instead of a single peak we observe two peaks at
Amax1 = 0.318 and Apaxe = 0.668. A closer examination
shows that these values correspond to the eigenvalues of a
single “right-angle animal” alone. For the same structure,
but with a horizontal and vertical periodicity of 3 and 4
(intercalation of, respectively, two or three capacities in
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Fig. 4. (a) Real part of the impedance Re(Z) versus X\ for
a 12 x 12 lattice wholly occupied by capacities, except for
an array of 36 regularly distributed horizontal coils, linking
sites (x,y) and (z,y + 1) with « and y even. Re(Z) presents
a “colossal” resonance for A ~ 0.628. (b) Same curves for an
array where each horizontal coil originates at a node (z,y)
with both coordinates z and y multiples of 3 (solid line) and 4
(dotted line). Figures (c¢) and (d) correspond, respectively, to
Figures (a) and (b), with right-angle animals replacing the hor-
izontal coils. The two peaks in Figure (c) occur at the same \ as
the resonances of a single right-angle (see Fig. 3c). These reso-
nances splits up when the periodicity of the coil array changes.

either direction), the spectra are shown in Figure 4d. We
observe that, in comparison to Figure 4c, both peaks split
up slightly: this illustrates the primordial role of coupling
via interference in the spectra of crystal-like arrangements
of elementary lattice animals.

One might summarize that the periodic arrangement
of bonds and voids could allow for the construction of com-
posites with absorption properties at very specific frequen-
cies (see Figs. 4a—d), whereas disordered arrangements on
the dielectric surface (as in Fig. 3d) lead to multiple spec-
tral peaks, which in the infinite limit will turn into bands.

4 Binary lattice of resistances and capacitors

In this section, we present simulations for a disordered
resistance-capacitor system performed with the spectral
method first implemented in 2D by Jonckheere and
Luck [6] and then enhanced to 3D by two of the au-
thors [7]. This method yields the total network impedance
for any ratio h of the local impedances. Thereafter the
Nyquist diagram can be readily drawn and compared
to experiments on a real sample. As a first application,
Figure 5 illustrates the Nyquist diagrams obtained for a
square and a cubic lattice of resistors (09 = R™1) which
are replaced (doped) with a probability (concentration) p
by capacitors (o7 = jCw).

The calculations are performed for R =1 and C =1
and lattice sizes of 12 x 12 in 2D and 8 x 8 x 8 in 3D.
Since individual calculations for a random distribution
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Fig. 5. Nyquist diagrams, i.e. a plot of Im(Z(w)) vs. Re(Z(w))
with w as a parameter, for 2D and 3D hypercubic resistor lat-
tices, doped with various concentrations p of capacitor bonds.

are meaningless, averages are taken over a thousand sam-
ples for each density p, with p varying from low density
p = 0.01 to the percolation threshold p ~ p. (with the
thresholds p. = 0.5 in 2D and =~ 0.25 in 3D up to finite
size corrections).

Figure 5 shows that for a very small amount of capac-
itors (p = 0.01), the Nyquist diagram is a perfect semi-
circle centered on the value R corresponding to the DC
resistivity of the sample. This can be interpreted in terms
of a single capacity in parallel to a resistance, a system
which is governed by a single time constant 7 = RC' (see
Fig. 6a). For increasing p, the radius of the semi-circle be-
comes larger. As the percolation threshold is approached
(at which the two electrodes would be connected by a
percolating path of capacitors), a distortion of the semi-
circle becomes perceptible at high frequency (i.e. close to
the origin). This can be understood since the impedance
of a single capacitor vanishes at infinite frequency (see
Fig. 6b).
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Fig. 6. Simple electronic representations and their schematic
Nyquist diagrams. The upper figure represents a 2D network
where the conductors percolate. The second figure corresponds
to the same situation when the insulators percolate. The last
one is a model for a 3D system, with probability p such that
conductors and insulators simultaneously percolate.

In 2D, where necessarily either capacities or resistances
percolate (except for finite size effects which are compen-
sated by averaging over many samples), all Nyquist dia-
grams can be interpreted qualitatively by the phenomeno-
logical model of Figure 6. If the resistances percolate (see
Fig. 6a), the impedance corresponds at low frequency to
R;1 and R in series, thus equaling R; + Rs, whereas at
high frequency the impedance is given by Rs alone since
(' has zero impedance. By contrast, if the capacities per-
colate, the equivalent phenomenological circuit is shown
in Figure 6b. At high frequency, the circuit’s impedance
is governed by the two capacities in series and thus zero;
at low frequency, by contrast, the real part is given by R
while the capacities insulating behaviour gives rise to an
infinite imaginary part.

In 3D, the behaviour is radically different from the
2D case: a second semi-circle ending at the origin Z = 0
appears in Figure 5b as the percolation threshold p. =
0.2488126 [14] is approached from below. It is a signa-
ture of growing clusters in which capacities percolate, but
which are still embedded in a resistor-dominated environ-
ment (see Fig. 6¢ for an illustration of such a cluster). The
ratio of the radii of the two semi-circles is related to the
percolation probability for a finite size sample. Above p.
both species may percolate simultaneously. The resulting
Nyquist diagram contains a single structure which is al-
beit more complicated than a simple semi-circle, since it
is determined by a whole set of time constants deforming
the diagram close to the origin (i.e. at high frequency).
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5 Conclusion

As shown in references [8,9], the exact numerical renor-
malization (ENR) method allows for the calculation of
the impedances of disordered networks, and is particu-
larly well adapted if one species dominates the network.
In the present work, we argue that this method is very
competitive, since the formalism is simple and easy to im-
plement, and remains numerically efficient even far from
its privileged domain of application. The spectral method,
on the other hand, presents advantages for repeated calcu-
lations with a great number of conductance ratios, since
the spectral density of a given sample can be stored in
memory for calculations of the conductances for several
values of h (or \).

For the investigation of frequency-dependent quan-
tities, these two algorithms are clearly more suitable
than classical approaches such as effective medium ap-
proximation, sparse matrix method [15], transfer matrix
method [16] or the star-triangle transformation [17]. The
correctness of the ENR algorithm has been verified by
comparison to small clusters (animals) whose properties
can be calculated analytically.

In the present work, the ENR algorithm was used to
calculate the Nyquist diagrams of two and three dimen-
sional hypercubic lattices of randomly distributed resistors
and capacities. Obviously, the results are very sensitive to
the proportion of capacities to resistors, especially close
to the percolation threshold. But also the dimensionality
of the system plays an important role: in 2D, the Nyquist
diagrams is essentially given by a single semi-circle; in
3D, by contrast, for densities just below the percolation
threshold, two semi-circles are found which indicates the
imminent simultaneous percolation of both components,
capacities and resistors, through the system. In 2D, this
scenario is ruled out, since on sufficiently large lattices,
only one component may percolate at a time.

The Exact Numerical Renormalization proposed in ref-
erences [8-10] is undoubtedly the most efficient numerical
method if bonds or voids form large clusters, as in the
vicinity of a percolation threshold. The algorithm also
allows for a detailed analysis of the inter-bond coupling
which is particularly efficient between linked bonds, but
remains important for nearest neighbor bonds. Comple-
mentary information is provided by the spectral method,
even though the “global animal” is in general too large
for its spectrum to be interpreted in simple terms [6,7].
However, as soon as two conducting animals are separated
by more than one capacity, the coupling between the an-
imals decreases rapidly, and even if the influence of the
coupling on the resonance positions is still considerable,
the total spectral weight is roughly given by the sum of
the individual animals’ contributions.

Further complications arise from the presence of the
electrodes: the animal’s spectrum depends on its distances
from the electrodes (see Tabs. 2 and 3), and the resonances
may be slightly altered if the animal is very close to the
electrodes. For a simple animal (constituted by a few legs)
and localized near the center of a large lattice (for instance
N, = N, = 24) the difference between the results of the
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ENR algorithm (where the electrodes are taken into ac-
count) and the exact analytical eigenfrequencies and their
weights are almost negligible, since the shift of the reso-
nance pulsations behaves as 1/N2.

As shown in Section 4, for periodic arrangements of
given elementary animals, e.g. linked inductances in a ca-
pacitive array, the spectra are dominated by a few colossal
resonances only. These appear at A-values mirroring the
periodicity of the arrangement and the structure of the
animal itself. Only for very special arrangements, or in
the very dilute limit, the whole spectrum may be com-
pletely understood on the basis of the individual animals’
spectra themselves. As these super-lattices present very in-
teresting spectral properties, devices with specific absorp-
tion or transmission properties for electromagnetic waves
might be engineered as regular arrays of metallic grains of
a well-defined form on a dielectric support. In the dilute
limit p < 1, the devices properties would be essentially
given by the individual animals behaviour.

One can hope for very useful applications of these sys-
tems, especially in nano-technology. Moreover, progress
in furtivity, active skins, giant Raman scattering could be
spin-offs of a good understanding of the behavior of com-
posite materials in an electromagnetic field (see Ref. [18]).
The knowledge of, for instance, the resonances of given
patterns would allow to construct skins absorbing inci-
dent electromagnetic waves of well-defined wavelengths.
By combining several animals, one could obtain an arbi-
trary set of resonances, leading to an arbitrary frequency
response of the painted object.

It is a real pleasure to thank J.-M. Luck, A.K. Sarychev and
J.P. Clerc for very useful discussions.

Appendix A: Construction of the animals

In the following, we will present a recursive algorithm
which generates all n 4+ 1-animals based on the entire zoo
of n-legged animals. The basic idea is simple: it consists
of adding a leg (or bond) to each n-animal in every possi-
ble location. However, the zoo of n+ 1-animals obtained in
this manner will generally contain many identical animals.
These will be eliminated by comparing each new n + 1-
animal to the already created ones, such that only one
animal per species is kept. In the following, the method is
applied to a 2D square lattice; a generalization to higher
dimensions or different lattice types is however straight-
forward.

As recurrence seed, we use the only animal with “zero”
legs, i.e. a point at the origin. The zoo of 1-legged animals
is then obtained by adding a bond to this point, and con-
tains two horizontal and two vertical 1-animals.

In an analogous way, the zoo of 2-legged animals can
be generated by adding a further bond to these four 1-
animals. Since each 1-animal has two endpoints and each
of these endpoints has three vacancies at which a bond can
be added, there are 4 x 2 x 3 = 24 2-animals. A closer look
shows however that all 2-animals having their midpoint
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Table 4. Number of animals and species in the n-legged zoo
as a function of n and symmetry. For details, see text.

species in the zoo

n animals symmetries:

without  +transl. +4rot. +mirror
1 4 4 2 1 1
2 24 18 6 2 2
3 192 88 22 7 5
4 1920 439 88 25 16
5 22784 2224 372 99 55
6 311296 11342 1628 416 222
7 4796416 58 168 7312 1854 950
8 82049 024 8411 4265
9 1539876352 19591

at the origin (i.e. 4 of the L-shaped and 2 of the straight
ones) are created twice by this procedure: the full zoo of 2-
legged animals thus contains only 18 species. The number
of species as a function of the number of legs resulting
from this recursive algorithm is listed in the third column
in Table 4.

By considering the system without electrodes, three
more symmetries are gained which allow us to reduce the
number of species in each zoo. (i) Translational invariance:
in a zoo with electrodes, many animals are connected to
each other by a simple shift, e.g. the two 2-animals which
result from adding a horizontal bond either to the left or
to the right site of the horizontal 1-animal. In an infinite
lattice, such animals belong to the same species. To avoid
double counting in the generation procedure, each newly
created n+ 1-animal will be shifted to a well-defined place
— e.g. such that its lower left corner has lattice coordinates
(0,0) — and will then be compared to the animals already
contained in the zoo. As shown by the values in column 4
of Table 4, translational invariance reduces the number of
n-legged species by roughly a factor n+ 1. This factor cor-
responds to the number of sites occupied by an n-animal
without loops, and is thus exact for n < 3 since a loop
requires at least four bonds.

(ii) Rotational invariance: by eliminating animals con-
nected to each other via rotations by multiples of /2, the
zoos can be further reduced, as can be seen from column 5
in Table 4. The reduction with respect to the previous col-
umn approaches a factor of 4 in the limit of large animals,
n > 1. This can be easily understood because a general
animal can be placed in 4 different orientations in a square
lattice. This bare factor of 4 is reduced by the presence of
animals which are self-invariant under rotations by multi-
ples of /2. However, since the relative abundance of these
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self-symmetric species in the zoo decreases as the number
of legs n increases, the reduction factor approaches 4 for
n — oo.

(iii) Mirror symmetry: still more species can be elim-
inated by mirroring on the z-axis. As there is only one
mirror axis, the number of species in the last column of
Table 4 is reduced with respect to the previous column by
roughly a factor of 2 (note that mirroring on the y-axis
is equivalent to mirroring on the z-axis and a subsequent
rotation by 7). Deviations from this factor of 2 are again
due to self-symmetric species, and diminish as the size of
the animals increases.

The last column in Table 4 thus shows the number of
topologically distinct species in the zoo of n-legged an-
imals. These species along with the relative number of
animals they contain are shown, for n < 4, in Figure 1.
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